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Abstract

Understanding changes in wave attenuation by emergent vegetation as wetlands degrade

or accrete over time is crucial for incorporation of wetlands into holistic coastal risk manage-

ment. Linked SLAMM and XBeach models were used to investigate potential future changes

in wave attenuation over a 50-year period in a degrading, subtropical wetland and a prograd-

ing, temperate wetland. These contrasting systems also have differing management con-

texts and were contrasted to demonstrate how the linked models can provide management-

relevant insights. Morphological development of wetlands for different scenarios of sea-

level rise and accretion was simulated with SLAMM and then coupled with different vegeta-

tion characteristics to predict the influence on future wave attenuation using XBeach. The

geomorphological context, subsidence, and accretion resulted in large predicted reductions

in the extent of vegetated land (e.g., wetland) and changes in wave height reduction poten-

tial across the wetland. These were exacerbated by increases in sea-level from +0.217 m to

+0.386 m over a 50-year period, especially at the lowest accretion rates in the degrading

wetland. Mangrove vegetation increased wave attenuation within the degrading, subtropi-

cal, saline wetland, while grazing reduced wave attenuation in the temperate, prograding

wetland. Coastal management decisions and actions, related to coastal vegetation type and

structure, have the potential to change future wave attenuation at a spatial scale relevant to

coastal protection planning. Therefore, a coastal management approach that includes

disaster risk reduction, biodiversity, and climate change, can be informed by coastal model-

ing tools, such as those demonstrated here for two contrasting case studies.
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Introduction

There has been increasing global recognition among coastal managers of the importance of

conserving or restoring vegetation to increase coastal resilience through ecosystem service

provision, such as the attenuation of waves to reduce coastal flooding and marginal erosion

[1–6]. Quantification of this functionality of wetlands is demonstrated by multiple studies

that present detailed measurements of wave attenuation by coastal vegetation communities

[4,7–10] with some showing upwards of 50% wave reduction within the first ten meters of

vegetation. Although these measurements demonstrate the role that wetlands potentially

play in reducing impacts of waves and surge [11–13], the provision of ecosystem services is

recognized to be non-linear in space and time [14,15]. As wetland ecosystems decline glob-

ally [16] due to multiple pressures, such as clear cutting for aquaculture [17], nutrient input

[18], and changing sediment input [19] and respond to future sea-level rise [20–23], the

extent to which wetlands will continue to perform this role under future conditions is

uncertain. Understanding potential change in realized wave attenuation over time will be

crucial to the incorporation of coastal wetlands into holistic coastal risk management

[24,25].

Restoration and management policies and approaches, such as the Coastal Wetlands Plan-

ning, Protection and Restoration Act (Public Law 101–646, Title III), in the United States, or

the Habitat Directive (Council Directive 92/43/EEC), in the European Union, often focus on

maintaining wetland structure, e.g., the extent and type of vegetated wetlands. This approach

relies on the assumption that functions such as wave attenuation will be achievable whenever

some vegetation structure is present, but the diverse and complex structure of coastal wet-

lands means that the provision of specific services among locations or over time, can vary

greatly [26]. Numerical tools that could allow resource managers to benefit from rigorous

application of knowledge about wave attenuation by coastal vegetation into their decision

making are available [27,28], although they have not been widely used to quantify changes in

wave attenuation over time as sea-level rise and sediment accretion alter wetland extent and

configuration. Similarly, models that predict future wetland extent under various sea-level

rise scenarios [29,30] may not provide adequate insight on potential changes in key ecosys-

tem functions, such as wave attenuation. The objective here is to demonstrate how integrat-

ing models to predict changes both in wetland extent and subsequent wave attenuation

potential can be of support to management decisions. We utilized the Sea Level Affecting

Marshes Model (SLAMM) [31,32] and XBeach [33–35] model to assess changes in wetland

wave attenuation over time in response to sediment accretion, sea-level rise, management

actions, and their interactions. Managers often need simple tools to explore a range of possi-

bilities prior to more detailed analysis [36]. SLAMM has been used in many coastal areas to

assess future vulnerability to sea-level rise [37,38] and more recently it has been used to

explore cost-benefit of management strategies from stakeholder-generated values of ecosys-

tem services [39]. While several detailed models are available for simulations of wave propa-

gation e.g., [40,41], XBeach has been validated for a series of flume and field experiments

including vegetation [33,42,43] and can be applied relatively simply to cross shore two-

dimensional analysis. Such an approach could be used to support resource managers and

decision makers in disaster risk reduction and adaptation [44,45]. Here the models are

applied to two contrasting coastal wetlands providing case studies not only of the application

of the integrated models, but also of the utility of the results in assessing wave attenuation by

coastal vegetation in two areas where coastal wetlands form a vital part of coastal defense

measures: coastal Louisiana and the Dutch Wadden Sea.

Potential future wave attenuation under a range of scenarios
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Methods

Study areas

The two case studies are both in areas where coastal wetlands exist on the seaward side of

earthen defense levees and where levee management is considered essential for the future of

coastal communities and livelihoods. These case studies also illustrate the range of conditions

experienced by coastal wetlands: a degrading system with limited sediment supply and consid-

erable subsidence (Mississippi Delta, LA, USA) and a prograding system with plentiful sedi-

ment supply and negligible subsidence (Friesland, Wadden Sea, the Netherlands [NL]) (Fig 1).

Both areas have undergone extensive changes over the last several decades and climate change

and management actions are expected to influence the future elevation, area, or species com-

position of wetlands [46–51]. Wave attenuation and its potential impact on wave runup is of

key interest in both of these areas, and management options related to the construction or

preservation of vegetation in front of coastal protection levees are being explored [44,52,53].

Fig 1. General location of sites selected to illustrate contrasting coastal wetlands: A prograding system with plentiful sediment supply (Friesland,

Wadden Sea, the Netherlands) and a degrading system with limited sediment supply (Mississippi Delta, LA, USA). Arrow refers to North direction.

Created with ESRI ArcGIS 10.6.1 software. Basemap satellite images accessed from World Imagery ESRI Tile Layer located in: https://services.arcgisonline.

com/ArcGIS/rest/services/World_Imagery/MapServer (credits: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,

AeroGRID, IGN, and the GIS User Community). Background basemap accessed from World Countries (Generalized) ESRI Feature Layer located in https://

services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/World_Countries_(Generalized)/FeatureServer (credits: Esri, DeLorme Publishing Company,

Inc.).

https://doi.org/10.1371/journal.pone.0216695.g001
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The role of wetlands considered in management plans may be best evaluated if their future

effectiveness under a range of different future scenarios can be quantified. Thus, these areas

can serve as exemplary study sites for investigating the effect of future coastal wetland changes

on risk management.

In the Mississippi Delta, natural forces such as subsidence and hurricanes have combined

with river management and hydrologic alteration to produce rapid wetland loss [54,55]. The

value of wetland extent and character has been directly related to damage avoidance of private

property resulting from storm surges [56]. Some urban areas are surrounded by extensive pro-

tection infrastructures, (e.g., New Orleans, Louisiana, USA) but many coastal communities

remain unprotected. Thus, an approximately 150 km series of levees and floodgates is being

planned to provide protection from storm surges. This Morganza to the Gulf project [57]

largely follows existing areas of higher land along natural bayous but there are several locations

where it crosses coastal wetlands and these levee sections could potentially benefit from wave

attenuation by surrounding wetlands, or conversely be vulnerable to erosion from waves if the

current outboard wetlands further degrade. The vegetation in the selected Louisiana site (Fig

1) is currently dominated by Spartina patens. However, native black mangroves, Avicennia ger-
minans, are also found approximately 15 km south of the proposed levees site and have the

potential to expand northerly with predicted reductions in freezing temperatures [58]. As a

result, planting mangroves could serve as a cost-effective means for local managers to protect

levee systems from erosion caused by waves [59].

In the Wadden Sea, sedimentation fields protected by brushwood groynes have historically

been used to stimulate accretion and create wetlands subsequently reclaimed for agricultural

uses [60]. As the socioeconomic condition of the region evolved in the mid-twentieth century,

the reclamation of wetlands for agriculture was reduced and the natural value of wetlands was

recognized [61,62]. New sedimentation fields are not currently promoted, as they reduce the

area of intertidal flats, which are protected habitats themselves and valued ecosystems [63].

The limited intertidal area backed by the levees and a plentiful sediment supply results in a

narrow transition from intertidal flats to constructed wetlands [62,63]. As a result, most fore-

land wetlands lack pioneer species and are predominantly vegetated by climax species such as

Atriplex portulacoides on the low wetland and Elytrigia atherica on the high wetland [64]. Stra-

tegic management actions, such as livestock grazing with varying intensities, have been used to

increase biodiversity in these wetland assemblages [63]. The possible protective role of wet-

lands and their vegetation is not part of the present legal procedure for levee safety evaluation

because the long-term presence and management of the wetlands is considered uncertain. A

more advanced evaluation procedure that will be applied in the near future, however will likely

necessitate costly dike reinforcements [65]. The result of using wetlands as part of the coastal

defence is under re-consideration and therefore understanding the influence of grazing on the

ability of wetlands to attenuate waves is an important consideration.

Model application

Two linked models were used to evaluate the interactive effects of future climate change and

management decisions on potential wave attenuation over a coast-normal transect over a

50-year period, in line with common levee safety evaluation procedures. Within each site, a

transect was selected with initial elevations and wetland-water configuration representative of

conditions found within the respective larger regions (Fig 1; Table 1). Levee safety assessments

[66] are based on an evaluation of stretches of levees (typically 100’s to 1000 m long) with fairly

uniform hydraulic loads and geotechnical conditions. The reduction of nearshore waves at the

toe of the levee required for levee design is determined over a transect perpendicular to the

Potential future wave attenuation under a range of scenarios
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levee. While this ignores longshore gradients, it is computationally efficient and provides an

effective tool for use in exploring management options.

The models selected are in current use for independently assessing management options

[67,68] either to assess wetland response to sea-level rise, or to examine wave attenuation. The

purpose of linking them is to demonstrate that existing models can be used together to provide

greater insight than they can alone. SLAMM (version 6.2) was used to simulate the effects of

accelerated sea-level rise rates and accretion on the presence and absence of wetland habitats.

SLAMM is open source software that has been widely used in coastal areas globally to investi-

gate future sustainability of wetland habitats, and many coastal managers are familiar with its

application providing readily available model comparisons and well-documented model capa-

bilities and limitations [38,69–71]. The model simulates the dominant processes in wetland

development by using a decision-tree approach to convert one habitat type to another based

on elevation, slope, accretion, subsidence, erosion, and habitat type [32]. Previous applications

of SLAMM to coastal Louisiana illustrated through hindcasting simulations that SLAMM was

accurate in its predictions of saline wetland loss [71]. Inputs to the cell-based model included

bed elevation and land use land cover data, subsidence, and accretion, specific to the study

area and global sea-level rise rates (Table 1). The model was run at 15 m horizontal resolution

for the Louisiana site and 5 m for the Netherlands study site, based on the digital elevation

model resolution of the input data for both systems (Table 1).

Three sea-level rise scenarios were selected from the limited set of options provided in the

SLAMM interface at the time of the study and applied to both study sites (Table 1). Although

Table 1. Parameters and their associated values used in model setup and scenario runs.

Model Parameters Louisiana Netherlands

SLAMM Bed Elevation -1.16 to 1.02 m NAVD88 (Digital elevation model obtained from

[72])

-0.06 to 2.62 m NAP (Digital elevation model obtained from

[73])

Land Use Land Cover LULC map obtained from [72] LULC map obtained from [74]

Sea-level rise 21.7, 31.9, 38.6 cm by 2060 relative to 1990 levels [75] 21.7, 31.9, 38.6 cm by 2060 relative to 1990 levels [75]

Accretion 5.7, 9.1, 12.5 mm yr-1 [76] 1.3, 20.0, 56.3 mm yr-1 [77]

(includes subsidence)

Subsidence 8.8 mm yr-1 [78] N/A

XBeach Return Period 1/100 [57] 1/4000 [79]

Significant wave

height

1.86 m [57] 1.85 m [79]

Peak period 7.1 s [57] 6.3 s [79]

Surge level 4.36 m NAVD88 [57] 4.9 m NAP [79]

Species Herbaceous: Spartina patens
Mangrove:

Avicennia germinans

Salicornia spp.

Drag coefficient (CD) Herbaceous: 0.18 [10]

Mangrove: 1.0 [80]

0.19 [10]

Vegetation Layers Herbaceous: 1 layer

Mangrove: 6 layers

1 layer

Vegetation Height Herbaceous: 1.072 m [81]

Mangrove: 0.2, 0.5, 1.0, 1.5, 2.0, 2.5 m �

Base: 0.3 m [82]

Grazing: 0.05 m [83]

Stem Width Herbaceous: 0.0022 m [81]

Mangrove: 0.0086, 0.06, 0.035, 0.035, 0.015, 0.008 m �

0.00125 m

Stem Density Herbaceous: 629 m-2 [81]

Mangrove: 180, 0.6, 2.7, 1.5, 1, 0.5 m-2 �

1225 m-2

� indicates data were estimated for this study

https://doi.org/10.1371/journal.pone.0216695.t001
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these levels are now considered to be at the conservative end of recent predictions of future

sea-level rise [84], the various rates provide a range of potential future change. Managers will

need to consider the implications of different sea-level rise scenarios as part of their decision-

making process. Further, given uncertainty regarding future accretion rates and the sensitivity

of the model to this parameter [38,71], three accretion rates for each study area were used.

Parameterization of the accretion variable for Louisiana was derived from the mean and one

standard deviation of long-term accretion rates (1963–2006) measured in Cesium cores taken

within the region [76] (Table 1). The accretion variable for the Netherlands was derived from

observed elevation changes between 2001 and 2009. The accretion rate varies considerably

over the elevation range of the marsh, so an elevation related accretion curve was used [20], to

generate the lowest, median and highest percentile values for the accretion rate. As these are

observed accretion rates, they include effects of vegetation on sedimentation, compaction, sub-

sidence and average out temporal variability induced by storms during the period they repre-

sent [77]. The difference in methods used for accretion between the sites reflect different

periods and process histories However, these are the types of information often available to

managers, and the use of three values at each site provides a broad view of how accretion could

vary in the future. The assumption is also made that change in elevation is equal to that of the

accretion rate. Studies in Louisiana show that accretion may not always result in an equivalent

increase in elevation due to shallow subsidence (e.g., [85]) but differences are also site specific.

As this study is not focused on actual predictions of change in any one wetland, but explora-

tion of how changes in sea-level rise and accretion interact with management actions to influ-

ence wave attenuation, this assumption is considered reasonable.

A 50-year time horizon was selected to reflect the current management planning in both

Louisiana and the Netherlands [52,66]. A total of nine simulations each characterized by com-

binations of three sea-level rise rates and three accretion rates were run in SLAMM over a

50-year period to produce output of bed elevation and presence and absence of wetland vege-

tation across the transect.

The output from SLAMM (i.e., bed elevation and wetland presence/absence along a 3000 m

by 15 m transect for LA site, 3000 m by 5 m transect for Netherlands site) was then used in

XBeach (version 1.22.4672) [42] to model the effect of wetland presence and vegetation resis-

tance on wave attenuation under storm conditions. XBeach is an open source model for wave

propagation, mean flow, sediment transport and morphological changes of the nearshore area

and has been validated for a series of flume and field experiments including vegetation

[33,42,43]. XBeach uses an expression for time-averaged energy dissipation due to vegetation

that Mendez & Losada (2004) derived for random waves over an arbitrary bed [35]. Energy

dissipation by vegetation is based on properties that may vary with plant height, such as stem

diameter and density, as well as a bulk drag coefficient (CD), which enables a more realistic

representation of different types of vegetation than in other wave models that account for vege-

tation, e.g. Simulating Waves Nearshore (SWAN) [86]. Our model integration focused on rep-

resenting how the morphological and vegetation changes altered wave attenuation. This

application did not consider feedbacks between wave attenuation and accretion [87] which

would be an important future development but likely entails more complex analyses than

those used here.

Representative storm conditions and vegetation properties

The design storm conditions for levees differ considerably between Louisiana and the Nether-

lands [88]. Louisiana’s hurricane risk reduction levees are normally designed to provide pro-

tection from water levels with a return period of 1 in 100 years [57]. The design conditions for

Potential future wave attenuation under a range of scenarios
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the levee adjacent to the study site are a water level of 4.36 m NAVD 88, a significant wave

height of 1.86 m and a peak period of 7.1 s. The levee safety evaluation procedure in the Neth-

erlands has previously been based on the economic risk of flooding the hinterland with a

return period of 1 in 4000 years for this part of the country [66], although more complex pro-

cedures have been recently implemented [89]. The design conditions corresponding to the

simpler 1 in 4000 years return period are a water level of 4.9 m above MSL, a significant wave

height of 1.85 m and a peak period of 6.2 s for the area of interest [79,88]. The design storm

conditions used in this study include relatively short wave periods compared to those consid-

ered in other studies of tropical mangrove systems [9,90] that noted more limited wave attenu-

ation for longer period waves. However, these studies found that mangroves were effective at

attenuating short period waves (5–6 seconds). Furthermore, using the design storm conditions

in this analysis shows how model output results can be relevant to current planning frame-

works for disaster risk reduction in the systems studied and demonstrates the utility of the

approach for systems subject to varied storm conditions.

XBeach requires parameterization of the vegetation characteristics and bulk drag coefficient

(CD), which is related to the interplay between hydrodynamics and marsh vegetation proper-

ties such as size, flexibility and relative submergence. Base vegetation characteristics were

parameterized using knowledge of locally occurring plant species. In coastal Louisiana, vegeta-

tion characteristics were parameterized in the model using an average of localized measure-

ments of Spartina patens collected near the site of interest (Table 1). Plant characteristics are

predominately uniform across the vertical profile of Spartina patens. As a result, one set of

characteristics was used to represent the entire stem. The vegetation was parameterized with a

vegetation height of 1.07 m, a stem diameter of 2.2 mm and 629 stems per m2 [81]. The expo-

nential decay relationship between stem Reynolds number and CD used in previous studies

[10,27] and the vegetation characteristics parameterized in the model, were used to derive the

drag coefficient (CD = 0.18).

In the Dutch Wadden Sea area under investigation, the wetlands are characterized by a rela-

tively narrow band of pioneer species on the seaward side (Salicornia procumbens, Spartina
anglica) and a large area of established wetland to the landward side, covered with a mixed

canopy of Elymus athericus, Puccinellia maritima and Elytigia atherica typical of mid to high

wetland communities in northwest Europe. This vegetation composition is very similar to the

vegetation in the large flume experiment on wave attenuation by saline wetlands under storm

conditions [10]. The vegetation was parameterized with a vegetation height of 30 cm, a stem

diameter of 1.25 mm and 1225 stems per m2. As was used for the LA study area, previous stud-

ies [10,27] provided the relation between CD and Reynolds number for these flexible plant spe-

cies that were used to derive the drag coefficient (CD = 0.19) [27].

In addition to exploring changes in wave attenuation over time due to sea-level rise and

accretion in degrading and prograding systems, analysis was conducted to explore the effects

of intrinsic (local) management actions on wave attenuation under storm conditions. For

degrading Louisiana wetlands, expansion of native A. germinans, is predicted to occur because

of reductions in freezing temperatures [58]. As a result, planting mangroves could serve as a

means for local managers to ensure wetlands continue to provide protection to levees, or to

enhance the protection compared to current herbaceous species. To test the potential wave

attenuation effect of mangroves compared to herbaceous wetland, XBeach was parameterized

with vegetation characteristics representative of mature A. germinans, found within coastal

Louisiana (Table 1). In XBeach, energy dissipation by vegetation is based on measurable vege-

tation properties that may vary over the height of the plant. As a result, vegetation can be

parameterized across a number of vertical layers that represent the specific properties of vege-

tation at different heights. For this aspect of the study XBeach was parameterized with 6

Potential future wave attenuation under a range of scenarios
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vertical vegetation layers, representative of mature A. germinans, found within coastal Louisi-

ana: 0–20, 20–50, 50–100, 100–150, 150–200 and 200–250 cm (Table 1). Each layer represents

the characteristics of the plant at that height above the ground. To parameterize each vegeta-

tion layer in XBeach, number of stems and pneumatophores (entirely within the 0–20 cm

layer), height, and diameter were estimated for mature A. germinans trees from field photo-

graphs taken near Grande Isle, Louisiana (Table 1). These estimated values per tree were then

converted to m2 assuming 100 trees per hectare as derived from Osland et al. 2012 [91] for a

created mangrove wetland. Although no direct measurements of CD within mangrove stands

under storm conditions were available in the literature at the time of this study, CD = 1 has pre-

viously been used to represent rigid vegetation in experimental studies [92–94], characteristic

of mangrove roots and trunks. Thus, a bulk drag coefficient of 1.0 was used to parameterize

the model.

In the Dutch Wadden Sea, the wetlands are partly used as pasture for livestock and grazing

to promote species diversity, as previously described [95]. The effect of this management was

incorporated in the model by reducing the vegetation height to 5 cm whilst keeping the density

and stem diameter constant [83].

Analysis of model outputs

For each of the nine future change simulations (three SLR and three sediment accretion rates)

over the two study sites, SLAMM outputs included presence and absence of wetland vegeta-

tion. We then calculated the percent of the modelled transect that had vegetation present,

referred to as ‘wetland extent’, and evaluated how wetland extent changed over the 50-year

simulation period under the nine scenarios. From the XBeach output, we extracted wave

heights at the beginning of the transect and end of the transect and calculated wave attenuation

as the difference between the two. Higher wave attenuation values indicate smaller waves pres-

ent at the end of the transect. To separate the specific effect of vegetation on wave attenuation,

the difference in wave attenuation between simulations including vegetation and simulations

where vegetation was purposefully excluded (i.e., bare ground) was calculated.

Results

Effects of SLR, sediment accretion, and vegetation cover on future wave

attenuation

The degrading and prograding sites exhibited contrasting responses to the nine future change

simulations (three SLR and three sediment accretion rates) resulting in substantial differences

in predicted wetland presence. In the degrading case, under all nine simulations, wetland

extent decreased, with the fastest rate of decline occurring in the last ten years of simulation

under the medium and high SLR scenarios (Fig 2A–2C). Percent of vegetation present was

moderately stable in the prograding wetland study site, with a difference of -0.1% of vegetation

from year 0 to year 50 under the lowest accretion rates and difference of +0.1% of vegetation

from year 0 to year 50 under the highest accretion rates (Fig 3A–3C).

These distinct differences between the degrading and prograding wetlands translated into

markedly different potential future wave attenuation, measured as the change in wave height

between the start and end of the transect from XBeach. An increase in wave attenuation

equates to greater reduction in wave height, while a decrease in wave attenuation equates to

less reduction in wave height. The greatest increase in wave attenuation over time occurred in

the prograding wetland under the lowest SLR and highest accretion rate scenario, in which

attenuation of the 1.85 m incoming wave increased from 0.93 m at the start of the simulation
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to 1.1 m at simulation year 50 (Fig 3D). At the prograding site, even under the future scenario

with greatest SLR and least sediment accretion, wave attenuation only decreased by 0.04 m

over a 50-year period (Fig 3F). In contrast, wave attenuation decreased by approximately 0.20

m from simulation year zero to year 40 and an additional 0.34 m from year 40 to year 50 in the

degrading study site (Fig 2F). The decline in wave attenuation over time resulted in higher

waves at the end of the 3 km transect at year 50 compared to year zero, with an increase of 0.58

m (Fig 2F). Further, high accretion rates modulated decreases in wave attenuation over time

(Fig 2D–2F) as wetland extent was maintained (Fig 2A–2C). In both study sites, wave attenua-

tion of wetlands decreased over time for all scenarios where vegetation presence decreased

(Fig 2 all scenarios and Fig 3D–3F at a sediment accretion rate of 0.0013 m yr-1).

Over all future change scenarios and time points, wave attenuation was greater in the simu-

lations with vegetation versus simulations with only bare ground, but the magnitude of that

difference varied relative to the percent cover across the transect (i.e., wetland extent; Fig 4A).

While herbaceous vegetation in the degrading wetland resulted in up to 0.9 m of additional

wave attenuation over the modeled transect, the non-grazed wetland in the prograding wet-

land resulted in 0.5 m additional wave attenuation over the modeled transect (Fig 4A). Below

approximately 25% land (75% water) along the transect, the additional wave attenuation bene-

fit of vegetation rapidly declined; this was only seen in the degrading wetland as the prograding

wetland was at least 50% land in all modeled scenarios (Fig 4A). The difference in wave

Fig 2. Change in wetland extent and wave attenuation in a degrading wetland (Mississippi Delta) under a range of sea-level rise and

accretion scenarios and management actions. Extent of marsh and wave attenuation reported as a range across the three accretion rates (Table 1)

and for three sea level rise scenarios: (A,D) 0.217 m of SLR, (B,E) 0.319 m of SLR, and (C,F) 0.386 m of SLR.

https://doi.org/10.1371/journal.pone.0216695.g002
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attenuation between vegetation and bare ground simulations increased as wetland extent

increased to approximately 30% of the transect, and then leveled off (Fig 4A). An increase in

vegetation cover on the transect beyond 30% did not considerably increase wave attenuation

relative to having only bare ground on the transect.

Effects of management actions on future wave attenuation

In the degrading wetland (Louisiana), the replacement of herbaceous vegetation with man-

groves in the model resulted in additional wave attenuation across all SLR and accretion sce-

narios (Fig 2). The greatest difference in wave attenuation between simulations with mangrove

characteristics (new management action) and herbaceous characteristics (traditional manage-

ment) was observed when the percent of transect with vegetation was lowest (Fig 4B). In other

words, the additional wave attenuation benefit of the mangrove management action over the

traditional management action declined as the percent cover increased on the transect (Fig

4B), or mangroves provide relatively larger benefits for narrow wetlands. In the prograding

wetland (NL), the analysis to test the effects of adding grazing pressure on the wetland vegeta-

tion, showed a decline in wave attenuation of 40% compared to the un-grazed simulations.

This represents a predicted increase in wave height (reduction in wave attenuation) of approxi-

mately 0.4 m across all scenarios (Figs 3 and 4B). The non-grazed management action in the

prograding wetland (NL) resulted in 0.4 m additional wave attenuation over the transect

Fig 3. Change in wetland extent and wave attenuation in a prograding wetland (Wadden Sea) under a range of sea-level rise and accretion

scenarios and management actions. Extent of marsh and wave attenuation reported as a range across the three accretion rates (Table 1) and for

three sea level rise scenarios: (A,D) 0.217 m of SLR, (B,E) 0.319 m of SLR, and (C,F) 0.386 m of SLR.

https://doi.org/10.1371/journal.pone.0216695.g003
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relative to the grazed management action (Fig 4B). In the prograding wetland, the difference

between grazed and un-grazed vegetation influence on wave attenuation lessened once the

percentage of land was greater than 70% (30% water) (Fig 4B).

Discussion

The use of two, linked models serves as an illustrative approach for exploring ecosystem service

provisions over decadal time scales and for informing coastal flood risk management. Model

results indicate non-linear effects of environmental conditions and management actions on

wave attenuation potential of coastal wetlands in two study sites. While this study focused on

the exploration of the effects of climate scenarios, environmental uncertainties, and manage-

ment decisions, the approach could also be used to explicitly evaluate tradeoffs in management

objectives (e.g., biodiversity vs. risk reduction), explore how wave dissipation varies for differ-

ent storm wave scenarios, and identify critical change or tipping points in the system where

ecosystem service provisions may be lost entirely. The model approach utilized here may be

useful to managers confronted by complex problems, who often have to rely on conceptual

modeling approached [96] or qualitative weight of evidence approach [97] when process-

based numerical models of complex systems are not available.

Despite the simplified approach, the SLAMM results are consistent with previous studies

for coastal Louisiana where historically high rates of wetland fragmentation and conversion to

open water are prevalent in the study area modeled [54,98,99]. In the Wadden Sea case study

used here, SLAMM results indicate wetland extent will be fairly stable under multiple sea-level

rise and accretion scenarios. Similarly, an earlier study predicted marsh elevation to keep pace

with sea-level rise over 100 year time period [100]. Others have noted the importance of main-

taining a sufficient sediment supply in the Wadden Sea in order to sustain the marshes under

sea-level rise [101], through management intervention if necessary [102].

Several assumptions made in this study, e.g., the sea-level rise rates and modelling accretion

rate as equivalent to elevation change, impact the frequency, duration, and magnitude of

Fig 4. Comparison of wave attenuation across a range of land to water ratios in a degrading wetland, Louisiana, USA (LA), and an prograding wetland,

Netherlands (NL). A: vegetated wetland versus bare ground, B: between management actions.

https://doi.org/10.1371/journal.pone.0216695.g004
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wetland flooding and thus wetland submergence and conversion to open water. Furthermore,

additional processes, such as the generation of sediment by wave-induced erosion on the

marsh edge and the movement of sediment through marsh creek systems could change accre-

tion patterns. Future work using more process-based models that incorporate dynamic linkage

between sediment deposition, vegetation, accretion, and elevation change could provide

greater insight but presently such detailed models are too complex, costly and time consuming

for many management applications.

The analysis also demonstrates that the effect of vegetation type on wave attenuation varies

as wetland landscapes change over time. In the Louisiana site, as vegetation converted to open

water over time, establishing mangroves provided 0.05 m to 0.18 m (Fig 4B) more wave attenu-

ation than herbaceous wetland vegetation. However, rates of wave attenuation were predicted

to change non-linearly over time in the degrading wetland, with a steady decline in wave atten-

uation to year 30 and a rapidly decreasing rate after year 40, indicating potential critical change

points in wave attenuation with reduction in wetland extent along the transect. The extent of

marsh on the transect decreases markedly in the low accretion scenario around year 30, likely

indicating that the initial ‘elevation capital’ of the marsh has been overtaken by sea-level rise at

the lower accretion rates. For both the degrading (Louisiana) and prograding (the Nether-

lands) cases it was demonstrated that vegetation provided sufficient additional wave attenua-

tion (vs. no vegetation) on foreshores over time under various future scenarios of change to be

relevant to management decision making. Further testing could be conducted to explore the

role of other management measures such as using dredged material to fill existing open water,

or the timing of such measures in order to maintain a minimum future extent of vegetation in

front of the levee to provide wave attenuation under design storm conditions.

Over all future change scenarios and time points analyzed, we observed 1.09 m to 1.60 m

reduction in wave height over the 3 km transects, which equates to an approximate 0.02% to

0.03% decrease in wave height per meter. Direct comparisons of these values to other studies are

confounded by the fact that wave dissipation varies in response to factors such as wave heights,

water depths, vegetation characteristics and extent, and distance traversed [9,56,103,104]. For

instance, previous studies [10] observed 20% dissipation in non-breaking waves over a 40m dis-

tance (i.e., 0.5% per m), while others [3] report< 0.025% dissipation per m at distances>1,000

m. Moreover, our study did not assume 100% coverage of vegetation across the entire transect,

and instead we parameterized the model taking into account current and future wetland extent.

Thus, it is important to note that the results here provide an indication of wave attenuation poten-

tial over a range of specific simulated environmental and management conditions.

In cases where wetland extent was less than 40% in comparison to open water, presence of

A. germinans instead of a dominant herbaceous species, was found to potentially double wave

attenuation (Fig 4B). The location modeled was a brackish and saline wetland that has experi-

enced high fragmentation since 1985 [54], suggesting the need for restoration action. For wet-

land restoration efforts with wave attenuation as a primary goal, including mangrove A.

germinans as a component of vegetation plantings has potential to increase realized wave

attenuation. A. germinans is a native, but currently transitional, species in coastal Louisiana,

and the use of a transitional species in coastal restoration poses the potential risk that planted

or established mangroves may still be lost in a very cold winter, even though the frequency of

these extreme cold events is predicted to decline [58]. Therefore, combinations of herbaceous

wetland vegetation and mangroves may provide the most resilience in the wave attenuation

function, supporting the general conclusion that having a range of species can stabilize ecosys-

tem processes in response to variation and disturbance [105].

Within the prograding wetlands of the Dutch Wadden Sea, the practice of grazing to

enhance the ecological diversity of foreshores has the potential to almost eliminate the added
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wave attenuation function provided by vegetation. Stable and high sediment supply was found

to result in minimal changes in wave attenuation over the next 50 years through the range of

SLR and accretion scenarios. However, grazing (versus no grazing) was still predicted to result

in approximately 0.4 m reduction in wave attenuation (Fig 4B). As the overall system was pre-

dicted to be stable, managers would need to decide whether this reduction in wave attenuation

was sufficiently beneficial to eliminate grazing. Rotated grazing regimes with intermediate

grazing pressure have been shown to benefit plant diversity [60], and results of this research

suggest that alternative grazing regimes may also increase the wave attenuation function pro-

vided by wetlands in these prograding wetlands depending on the effect on vegetation struc-

ture. Some studies have also shown that grazing by large herbivores, such as cattle and horses,

can reduce accretion rates as a result of trampling [83], while there is no effect of small herbi-

vores (hares and geese). However, other studies have shown that stocking densities and the

activity of large herbivores affects accretion [106]. The current study only considers the effect

of grazing on vegetation height; further analysis would be needed to examine the combined

effect of changes in vegetation structure and accretion. However, given the status of the Wad-

den Sea marshes examined in this study (prograding, high sediment supply) any effect of graz-

ing on future wave attenuation may be more through changes to vegetation rather than

relative elevation.

Increased understanding of design, maintenance, management, and governance is required

for successful management of natural ecosystems for wave attenuation and shoreline protec-

tion [107]. For both a degrading and prograding wetland system the combination of SLAMM

and XBeach models provided insight on how management decisions and wetland structure

could influence future wave attenuation.

Conclusion

Planning for effective disaster risk reduction in coastal areas requires predictions of wave

attenuation that considers future sedimentation, geomorphic configuration and vegetation

cover. Specifically, incorporation of local landscape context and uncertainty regarding pre-

dicted rates of sediment accretion, subsidence, and local eustatic sea-level rise is essential. This

study has shown the utility of relatively simple models to evaluate potential future landscapes

that can be used to estimate hydraulic loading conditions (e.g., wave height) on levees and

inform risk reduction planning.

Management decisions and actions related to coastal vegetation type and structure have the

potential to change future coastal wave attenuation at a spatial scale relevant to coastal protec-

tion planning. It is increasingly well documented that coastal vegetation provides wave attenu-

ation and planning models for disaster risk management at small and medium spatial scales

could benefit from considering a range of potential future vegetation conditions, including

how management related vegetation changes can contribute to or detract from risk reduction

needs.

The complexities of future changes in natural systems can be daunting for coastal managers

to consider and biogeomorphic contributions to coastal disaster risk reduction may not be

routinely considered. This study has demonstrated how a large number of possible future sce-

narios can be readily analysed using freely available software that simplify complex interac-

tions. In addition, it provided examples of how this comparative information could inform

risk reduction planning. Such analyses could be expanded to consider different landscape con-

figurations, vegetative conditions, and changing predictions of future sea-level rise, or further

linked to models that consider the effects on other ecosystem functions and services (e.g., nurs-

ery habitat for commercially important fish species). Detailed design of risk reduction actions
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requires the use of more complex models that consider processes not captured in the approach

used here (e.g., oblique wave attack). However, simpler approaches can be used to both expand

the utility and target the use of those analyses to consider factors such as vegetative change and

detailed hydrodynamics.
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