Ravbara, Primoz and Bransonb, Kristin and H.Simpson, Julie,(2019), An automatic behavior recognition system classifies animal behaviors using movements and their temporal context. , Journal of Neuroscience Methods, UNSPECIFIED
Text
Download (13MB)
Download (13MB)
Abstract
Animalscanperformcomplexandpurposefulbehaviorsbyexecutingsimplermovementsinflexiblesequences. It is particularly challenging to analyze behavior sequences when they are highly variable, as is the case in language production, certain types of birdsong and, as in our experiments, flies grooming. High sequence variabilitynecessitatesrigorousquantificationoflargeamountsofdatatoidentifyorganizationalprinciplesand temporal structure of such behavior. To cope with large amounts of data, and minimize human effort and subjective bias, researchers often use automatic behavior recognition software. Our standard grooming assay involves coating flies in dust and videotaping them as they groom to remove it. The flies move freely and so performthesamemovementsinvariousorientations.Asthedustisremoved,theirappearancechanges.These conditionsmakeitdifficulttorelyonprecisebodyalignmentandanatomicallandmarkssuchaseyesorlegsand thuspresentchallengestoexistingbehaviorclassificationsoftware.Humanobserversusespeed,location,and shapeofthemovementsasthediagnosticfeaturesofparticulargroomingactions.Weappliedthisintuitionto designanewautomaticbehaviorrecognitionsystem(ABRS)basedonspatiotemporalfeaturesinthevideodata, heavilyweightedfortemporaldynamicsandinvarianttotheanimal’spositionandorientationinthescene.We usethesespatiotemporalfeaturesintwostepsofsupervisedclassificationthatreflecttwotime-scalesatwhich thebehaviorisstructured.Asaproofofprinciple,weshowresultsfromquantificationandanalysisofalarge datasetofstimulus-inducedflygroomingbehaviorsthatwouldhavebeendifficulttoassessinasmallerdataset ofhuman-annotatedethograms.Whilewedevelopedandvalidatedthisapproachtoanalyzeflygroomingbehavior,weproposethatthestrategyofcombiningalignment-invariantfeaturesandmulti-timescaleanalysismay begenerallyusefulformovement-basedclassificationofbehaviorfromvideodata.
Keywords : | Grooming Neuroethology Behavior Machinelearning, UNSPECIFIED |
---|---|
Journal or Publication Title: | Journal of Neuroscience Methods |
Volume: | UNSPECIFIED |
Number: | UNSPECIFIED |
Item Type: | Article |
Subjects: | Manajemen |
Depositing User: | Yuwono Yuwono |
Date Deposited: | 13 Dec 2019 08:07 |
Last Modified: | 13 Dec 2019 09:54 |
URI: | https://repofeb.undip.ac.id/id/eprint/89 |